2016MPAcc综合数学冲刺备考之十月串讲(3)
等和数列
定义
“等和数列”:在一个数列中,如果每一项与它的后一项的和都为同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和。
对一个数列,如果其任意的连续k(k≥2)项的和都相等,我们就把此数列叫做等和数列
性质
必定是循环数列
证明:对任意正整数n,有an + an+1 + … + an+k-1 = an+1 + an+2 + … + an+k, 所以对任意正整数n,an = an+k,如果这个数列有n+k项的话。
练习
1、下面一列整数中(每个字母或括号都代表一个整数),任意相临的3个整数的和都是20,则x+y+z=? x,2,(),(),(),4,(),y,(),(),z
2.(2004年湖南省理科实验班联合招生考试数学卷第2试第三题) 圆周上放着120个正数(不一定是整数),今知其中任何相连的35个数的和都是200.证明:这些数中的每一个数都不超过30.(旁注:题目中“相连”即“相临”之意) 答案: 第1题 : x=14,y=2,z=2 , 故: x+y+z=18 ; 第2题 : (120,35)=5 ,使5个数为一组,每7组的和是200,那么每组有 200/7<30 所以每一个数都不超过30。列的通项求法
一般有
an=Sn-Sn-1 (n≥2)
累和法(an-an-1=... an-1 - an-2=... a2-a1=...将以上各项相加可得an )。
累乘法
逐商全乘法(对于后一项与前一项商中含有未知数的数列)。
化归法(将数列变形,使原数列的倒数或与某同一常数的和成等差或等比数列)。
特殊数列的通项的写法
1,2,3,4,5,6,7,8....... ---------an=n
1,1/2,1/3,1/4,1/5,1/6,1/7,1/8......-------an=1/n
2,4,6,8,10,12,14.......-------an=2n
1,3,5,7,9,11,13,15.....-------an=2n-1
-1,1,-1,1,-1,1,-1,1......--------an=(-1)^n
1,-1,1,-1,1,-1,1,-1,1......--------an=(-1)^(n+1)
1,0,1,0,1,0,1,0,1,0,1,0,1....------an=[(-1)^(n+1)+1]/2
1,0,-1,0,1,0,-1,0,1,0,-1,0......-------an=cos(n-1)π/2=sinnπ/2 9,99,999,9999,99999,......... ------an=(10^n)-1
1,11,111,1111,11111.......--------an=[(10^n)-1]/9
衍生n,nn,nnn,nnnn,nnnnn......---------an=[(10^n)-1]*n/9,n为1-9的整数
1,4,9,16,25,36,49,.......------an=n^2
1,2,4,8,16,32......--------an=2^(n-1)
前N项和公式的求法
(一)1.等差数列:
通项公式an=a1+(n-1)d 首项a1,公差d, an第n项数
ak=ak+(n-k)d ak为第k项数
若a,A,b构成等差数列 则 A=(a+b)/2
2.等差数列前n项和:
设等差数列的前n项和为Sn
即 Sn=a1+a2+...+an;
那么 Sn=na1+n(n-1)d/2
=dn^2(即n的2次方) /2+(a1-d/2)n
还有以下的求和方法: 1,不完全归纳法 2 累加法 3 倒序相加法
(二)1.等比数列:
通项公式 an=a1*q^(n-1)(即q的n-1次方) a1为首项,an为第n项
an=a1*q^(n-1),am=a1*q^(m-1)
则an/am=q^(n-m)
(1)an=am*q^(n-m)
(2)a,G,b 若构成等比中项,则G^2=ab (a,b,G不等于0)
(3)若m+n=p+q 则 am×an=ap×aq
2.等比数列前n项和
设 a1,a2,a3...an构成等比数列
前n项和Sn=a1+a2+a3...an
Sn=a1+a1*q+a1*q^2+....a1*q^(n-2)+a1*q^(n-1)(这个公式虽然是最基本公式,但一部分题目中求前n项和是很难用下面那个公式推导的,这时可能要直接从基本公式推导过去,所以希望这个公式也要理解) Sn=a1(1-q^n)/(1-q)=(a1-an*q)/(1-q);
注: q不等于1;
Sn=na1 注:q=1
求和一般有以下5个方法: 1,完全归纳法(即数学归纳法) 2 累乘法 3 错位相减法 4 倒序求和法 5 裂项相消法